Blogs
Contact me
- Blog -> https://cugtyt.github.io/blog/index
- Email -> cugtyt@qq.com
- GitHub -> Cugtyt@GitHub
最近文章:
Massive Search: LLM Structured Outputs is All You Need
Executing complex searches across entities with diverse attributes —such as text, numbers, booleans, and images—can be challenging. These searches often require intricate queries, potentially involving joins across multiple data sources. For example, searching for a book might involve filtering by its title, description, price, user comments, and cover image simultaneously.
Massive Search provides a method for querying such complex but logically grouped data by leveraging LLM Structured Outputs. “Logically grouped” means all the data pertains to the same core entity, like a specific book product.
Smart Diagnosis Solution
Smart Diagnosis Solution, stack and layers
Manufacturer-Executor-Evaluator: A General LLM Agentic Pattern for Collective Intelligence
- Manufacturer is responsible for generating the task specification based on the task examples, which is the system start point and objective,
- the Executor is responsible for executing the task based on the task specification, it is the final solution output,
- and the Evaluator is responsible for evaluating the execution result to make sure the task specification meets the objective, feedback or comments from Evaluator will be used to improve the task specification in the next iteration.
系列博客:
LLM Application系列
关于LLM的应用实践思考
论文笔记系列
阅读的一些论文
算法题目系列
做过的一些算法题目和练习
Effective Python 系列
高效使用python
Effective Pytorch 系列
高效使用Pytorch等相关工具
intv 系列
算法笔记
Blogs of 2020
Blogs of 2019
Blogs of 2018
Blogs of 2017
机器学习实战部分代码精简优化系列
在学习《Machine Leaning In Action》发现代码实现很不好
很多代码实现繁琐,效率低
使用语言特性可以优化,如列表推导,zip等
利用第三方包可以简化代码,提升效率,如numpy广播,矩阵处理等
数学上的简化更加有效
机器学习和数据科学相关系列
一些关于机器学习、数据科学的算法和应用相关内容
Udacity Deep RL 系列
Udacity Deep RL代码理解,笔记
Crafting Your Research Future 笔记 系列
阅读《Crafting Your Research Future A guide to Successful Master’s and Ph.D. Degrees in Science & engineering》笔记
Kaggle系列
记录Kaggle上的尝试
强化学习相关系列
强化学习相关笔记