Skip to the content.

Q-Learning Agents


Contact me

Blog -> https://cugtyt.github.io/blog/index
Email -> cugtyt@qq.com
GitHub -> Cugtyt@GitHub


本系列博客主页及相关见此处

来自Arthur Juliani Simple Reinforcement Learning with Tensorflow series Part 0 - Q-Learning Agents


Concepts

Policy Gradient methods

which attempt to learn functions which directly map an observation to an action.

observation -> action

Q-Learning

attempts to learn the value of being in a given state, and taking a specific action there.

state, action -> value

Bellman Equation

which states that the expected long-term reward for a given action is equal to the immediate reward from the current action combined with the expected reward from the best future action taken at the following state.

\[Q(s, a) = r + \gamma (\max (Q(s', a')))\]

利用Bellman Equation可以实现Q-Table算法:

代码来源

import gym
import numpy as np

env = gym.make('FrozenLake-v0')

#Initialize table with all zeros
Q = np.zeros([env.observation_space.n,env.action_space.n])
# Set learning parameters
lr = .8
y = .95
num_episodes = 2000
#create lists to contain total rewards and steps per episode
#jList = []
rList = []
for i in range(num_episodes):
    #Reset environment and get first new observation
    s = env.reset()
    rAll = 0
    d = False
    j = 0
    #The Q-Table learning algorithm
    while j < 99:
        j+=1
        #Choose an action by greedily (with noise) picking from Q table
        a = np.argmax(Q[s,:] + np.random.randn(1,env.action_space.n)*(1./(i+1)))
        #Get new state and reward from environment
        s1,r,d,_ = env.step(a)
        #Update Q-Table with new knowledge
        Q[s,a] = Q[s,a] + lr*(r + y*np.max(Q[s1,:]) - Q[s,a])
        rAll += r
        s = s1
        if d == True:
            break
    #jList.append(j)
    rList.append(rAll)

print "Score over time: " +  str(sum(rList)/num_episodes)

print "Final Q-Table Values"
print Q

但是这种方法不具有扩展性,毕竟表格的容量有限。

Q-Learning with Neural Networks

代码来源

import gym
import numpy as np
import random
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline

env = gym.make('FrozenLake-v0')

#----- Implementing the network itself -----------

tf.reset_default_graph()
#These lines establish the feed-forward part of the network used to choose actions
inputs1 = tf.placeholder(shape=[1,16],dtype=tf.float32)
W = tf.Variable(tf.random_uniform([16,4],0,0.01))
Qout = tf.matmul(inputs1,W)
predict = tf.argmax(Qout,1)

#Below we obtain the loss by taking the sum of squares difference between the target and prediction Q values.
nextQ = tf.placeholder(shape=[1,4],dtype=tf.float32)
loss = tf.reduce_sum(tf.square(nextQ - Qout))
trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
updateModel = trainer.minimize(loss)

# ----- Training the network -----

init = tf.initialize_all_variables()

# Set learning parameters
y = .99
e = 0.1
num_episodes = 2000
#create lists to contain total rewards and steps per episode
jList = []
rList = []
with tf.Session() as sess:
    sess.run(init)
    for i in range(num_episodes):
        #Reset environment and get first new observation
        s = env.reset()
        rAll = 0
        d = False
        j = 0
        #The Q-Network
        while j < 99:
            j+=1
            #Choose an action by greedily (with e chance of random action) from the Q-network
            a,allQ = sess.run([predict,Qout],feed_dict={inputs1:np.identity(16)[s:s+1]})
            if np.random.rand(1) < e:
                a[0] = env.action_space.sample()
            #Get new state and reward from environment
            s1,r,d,_ = env.step(a[0])
            #Obtain the Q' values by feeding the new state through our network
            Q1 = sess.run(Qout,feed_dict={inputs1:np.identity(16)[s1:s1+1]})
            #Obtain maxQ' and set our target value for chosen action.
            maxQ1 = np.max(Q1)
            targetQ = allQ
            targetQ[0,a[0]] = r + y*maxQ1
            #Train our network using target and predicted Q values
            _,W1 = sess.run([updateModel,W],feed_dict={inputs1:np.identity(16)[s:s+1],nextQ:targetQ})
            rAll += r
            s = s1
            if d == True:
                #Reduce chance of random action as we train the model.
                e = 1./((i/50) + 10)
                break
        jList.append(j)
        rList.append(rAll)
print "Percent of succesful episodes: " + str(sum(rList)/num_episodes) + "%"