扩展torch.nn和torch.augograd
Contact me
- Blog -> https://cugtyt.github.io/blog/index
- Email -> cugtyt@qq.com
- GitHub -> Cugtyt@GitHub
本系列博客主页及相关见此处
本文来自pytorch官网
扩展torch.autograd
给autograd
添加运算需要对运算实现新的Function
子类,Function
是autograd
用于计算结果和梯度,以及编码运算历史的,每个新的函数需要实现两个方法:
forward()
用于执行运算。requires_grad=True
的Tensor
会被转换成没有梯度的张量,并在计算图中注册。计算结果可以返回一个Tensor
或者tuple
。backward()
梯度公式,它会返回和forward()
输入一样多的值,每个值是对于输入的梯度。如果输入不需要梯度,可以返回None
。
这是一个例子:
# Inherit from Function
class LinearFunction(Function):
# Note that both forward and backward are @staticmethods
@staticmethod
# bias is an optional argument
def forward(ctx, input, weight, bias=None):
ctx.save_for_backward(input, weight, bias)
output = input.mm(weight.t())
if bias is not None:
output += bias.unsqueeze(0).expand_as(output)
return output
# This function has only a single output, so it gets only one gradient
@staticmethod
def backward(ctx, grad_output):
# This is a pattern that is very convenient - at the top of backward
# unpack saved_tensors and initialize all gradients w.r.t. inputs to
# None. Thanks to the fact that additional trailing Nones are
# ignored, the return statement is simple even when the function has
# optional inputs.
input, weight, bias = ctx.saved_tensors
grad_input = grad_weight = grad_bias = None
# These needs_input_grad checks are optional and there only to
# improve efficiency. If you want to make your code simpler, you can
# skip them. Returning gradients for inputs that don't require it is
# not an error.
if ctx.needs_input_grad[0]:
grad_input = grad_output.mm(weight)
if ctx.needs_input_grad[1]:
grad_weight = grad_output.t().mm(input)
if bias is not None and ctx.needs_input_grad[2]:
grad_bias = grad_output.sum(0).squeeze(0)
return grad_input, grad_weight, grad_bias
使用:
linear = LinearFunction.apply
class MulConstant(Function):
@staticmethod
def forward(ctx, tensor, constant):
# ctx is a context object that can be used to stash information
# for backward computation
ctx.constant = constant
return tensor * constant
@staticmethod
def backward(ctx, grad_output):
# We return as many input gradients as there were arguments.
# Gradients of non-Tensor arguments to forward must be None.
return grad_output * ctx.constant, None
检查梯度:
from torch.autograd import gradcheck
# gradcheck takes a tuple of tensors as input, check if your gradient
# evaluated with these tensors are close enough to numerical
# approximations and returns True if they all verify this condition.
input = (torch.randn(20,20,dtype=torch.double,requires_grad=True), torch.randn(30,20,dtype=torch.double,requires_grad=True))
test = gradcheck(linear, input, eps=1e-6, atol=1e-4)
print(test)
扩展torch.nn
基本上只需要实现两个函数:
__init__
可选,参数等forward()
实例化的Function,用于执行操作,和上面的很像
class Linear(nn.Module):
def __init__(self, input_features, output_features, bias=True):
super(Linear, self).__init__()
self.input_features = input_features
self.output_features = output_features
# nn.Parameter is a special kind of Tensor, that will get
# automatically registered as Module's parameter once it's assigned
# as an attribute. Parameters and buffers need to be registered, or
# they won't appear in .parameters() (doesn't apply to buffers), and
# won't be converted when e.g. .cuda() is called. You can use
# .register_buffer() to register buffers.
# nn.Parameters require gradients by default.
self.weight = nn.Parameter(torch.Tensor(output_features, input_features))
if bias:
self.bias = nn.Parameter(torch.Tensor(output_features))
else:
# You should always register all possible parameters, but the
# optional ones can be None if you want.
self.register_parameter('bias', None)
# Not a very smart way to initialize weights
self.weight.data.uniform_(-0.1, 0.1)
if bias is not None:
self.bias.data.uniform_(-0.1, 0.1)
def forward(self, input):
# See the autograd section for explanation of what happens here.
return LinearFunction.apply(input, self.weight, self.bias)
def extra_repr(self):
# (Optional)Set the extra information about this module. You can test
# it by printing an object of this class.
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
)