TorchScript的使用
Contact me
- Blog -> https://cugtyt.github.io/blog/index
- Email -> cugtyt@qq.com
- GitHub -> Cugtyt@GitHub
本系列博客主页及相关见此处
本文来自pytorch官网,一个简单的例子:
class MyDecisionGate(torch.nn.Module):
def forward(self, x):
if x.sum() > 0:
return x
else:
return -x
class MyCell(torch.nn.Module):
def __init__(self):
super(MyCell, self).__init__()
self.dg = MyDecisionGate()
self.linear = torch.nn.Linear(4, 4)
def forward(self, x, h):
new_h = torch.tanh(self.dg(self.linear(x)) + h)
return new_h, new_h
my_cell = MyCell()
print(my_cell)
print(my_cell(x, h))
MyCell(
(dg): MyDecisionGate()
(linear): Linear(in_features=4, out_features=4, bias=True)
)
(tensor([[ 0.7322, 0.7123, -0.1956, 0.4073],
[ 0.3745, -0.1283, 0.0075, 0.8606],
[ 0.3516, 0.6831, -0.4802, 0.7025]], grad_fn=<TanhBackward>), tensor([[ 0.7322, 0.7123, -0.1956, 0.4073],
[ 0.3745, -0.1283, 0.0075, 0.8606],
[ 0.3516, 0.6831, -0.4802, 0.7025]], grad_fn=<TanhBackward>))
追踪Modules
class MyCell(torch.nn.Module):
def __init__(self):
super(MyCell, self).__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, x, h):
new_h = torch.tanh(self.linear(x) + h)
return new_h, new_h
my_cell = MyCell()
x, h = torch.rand(3, 4), torch.rand(3, 4)
traced_cell = torch.jit.trace(my_cell, (x, h))
print(traced_cell)
traced_cell(x, h)
TracedModule[MyCell](
(linear): TracedModule[Linear]()
)
这次我们使用了torch.jit.trace,它做的事是调用Module,记录Module运行的时候的运算,并生成一个torch.jit.ScriptModule实例。TorchScript把他的定义记录为一个中间表示Intermediate Representation (or IR),在深度学习中通常叫做图:
print(traced_cell.graph)
%input : Float(3, 4),
%h : Float(3, 4)):
%1 : ClassType<Linear> = prim::GetAttr[name="linear"](%self)
%weight : Tensor = prim::GetAttr[name="weight"](%1)
%bias : Tensor = prim::GetAttr[name="bias"](%1)
%6 : Float(4!, 4!) = aten::t(%weight), scope: MyCell/Linear[linear] # /opt/conda/lib/python3.6/site-packages/torch/nn/functional.py:1369:0
%7 : int = prim::Constant[value=1](), scope: MyCell/Linear[linear] # /opt/conda/lib/python3.6/site-packages/torch/nn/functional.py:1369:0
%8 : int = prim::Constant[value=1](), scope: MyCell/Linear[linear] # /opt/conda/lib/python3.6/site-packages/torch/nn/functional.py:1369:0
%9 : Float(3, 4) = aten::addmm(%bias, %input, %6, %7, %8), scope: MyCell/Linear[linear] # /opt/conda/lib/python3.6/site-packages/torch/nn/functional.py:1369:0
%10 : int = prim::Constant[value=1](), scope: MyCell # /var/lib/jenkins/workspace/beginner_source/Intro_to_TorchScript_tutorial.py:179:0
%11 : Float(3, 4) = aten::add(%9, %h, %10), scope: MyCell # /var/lib/jenkins/workspace/beginner_source/Intro_to_TorchScript_tutorial.py:179:0
%12 : Float(3, 4) = aten::tanh(%11), scope: MyCell # /var/lib/jenkins/workspace/beginner_source/Intro_to_TorchScript_tutorial.py:179:0
%13 : (Float(3, 4), Float(3, 4)) = prim::TupleConstruct(%12, %12)
return (%13)
对于终端用户来说,这些输出没什么意义,我们可以查看code属性,更好观察:
print(traced_cell.code)
def forward(self,
input: Tensor,
h: Tensor) -> Tuple[Tensor, Tensor]:
_0 = self.linear
weight = _0.weight
bias = _0.bias
_1 = torch.addmm(bias, input, torch.t(weight), beta=1, alpha=1)
_2 = torch.tanh(torch.add(_1, h, alpha=1))
return (_2, _2)
这是在干嘛
- TorchScript代码可以被它自己的解释器(一个受限的Python解释器)调用。这个解释器不需要获得全局解释锁GIL,这样很多请求可以同时处理。
- 这个格式可以让我们保存模型到硬盘上,在另一个环境中加载,例如服务器,也可以使用非python 的语言。
- TorchScript 提供的表示可以做编译器优化,做到更有效地执行。
- TorchScript 可以与其他后端/设备运行时进行对接,他们只需要处理整个项目,无需关心细节运算。
使用和平常的python代码一样:
print(my_cell(x, h))
print(traced_cell(x, h))
(tensor([[ 0.6658, 0.0497, 0.5019, 0.5357],
[-0.2033, 0.6821, 0.6016, 0.8495],
[ 0.7197, 0.5234, 0.2289, 0.6692]], grad_fn=<TanhBackward>), tensor([[ 0.6658, 0.0497, 0.5019, 0.5357],
[-0.2033, 0.6821, 0.6016, 0.8495],
[ 0.7197, 0.5234, 0.2289, 0.6692]], grad_fn=<TanhBackward>))
(tensor([[ 0.6658, 0.0497, 0.5019, 0.5357],
[-0.2033, 0.6821, 0.6016, 0.8495],
[ 0.7197, 0.5234, 0.2289, 0.6692]],
grad_fn=<DifferentiableGraphBackward>), tensor([[ 0.6658, 0.0497, 0.5019, 0.5357],
[-0.2033, 0.6821, 0.6016, 0.8495],
[ 0.7197, 0.5234, 0.2289, 0.6692]],
grad_fn=<DifferentiableGraphBackward>))
使用脚本转换Module
class MyDecisionGate(torch.nn.Module):
def forward(self, x):
if x.sum() > 0:
return x
else:
return -x
class MyCell(torch.nn.Module):
def __init__(self, dg):
super(MyCell, self).__init__()
self.dg = dg
self.linear = torch.nn.Linear(4, 4)
def forward(self, x, h):
new_h = torch.tanh(self.dg(self.linear(x)) + h)
return new_h, new_h
my_cell = MyCell(MyDecisionGate())
traced_cell = torch.jit.trace(my_cell, (x, h))
print(traced_cell.code)
def forward(self,
input: Tensor,
h: Tensor) -> Tuple[Tensor, Tensor]:
_0 = self.linear
weight = _0.weight
bias = _0.bias
x = torch.addmm(bias, input, torch.t(weight), beta=1, alpha=1)
_1 = torch.tanh(torch.add(x, h, alpha=1))
return (_1, _1)
可以看到没有出现if-else的分支,跟踪做的是:运行代码,记录出现的运算,构建ScriptModule,但是控制流就丢失了。
解决方法是提供一个脚本编译器,直接分析python代码进行转换:
scripted_gate = torch.jit.script(MyDecisionGate())
my_cell = MyCell(scripted_gate)
traced_cell = torch.jit.script(my_cell)
print(traced_cell.code)
def forward(self,
x: Tensor,
h: Tensor) -> Tuple[Tensor, Tensor]:
_0 = self.linear
_1 = _0.weight
_2 = _0.bias
if torch.eq(torch.dim(x), 2):
_3 = torch.__isnot__(_2, None)
else:
_3 = False
if _3:
bias = ops.prim.unchecked_unwrap_optional(_2)
ret = torch.addmm(bias, x, torch.t(_1), beta=1, alpha=1)
else:
output = torch.matmul(x, torch.t(_1))
if torch.__isnot__(_2, None):
bias0 = ops.prim.unchecked_unwrap_optional(_2)
output0 = torch.add_(output, bias0, alpha=1)
else:
output0 = output
ret = output0
_4 = torch.gt(torch.sum(ret, dtype=None), 0)
if bool(_4):
_5 = ret
else:
_5 = torch.neg(ret)
new_h = torch.tanh(torch.add(_5, h, alpha=1))
return (new_h, new_h)
结合脚本和跟踪
如果有一个module里面有很多选择,但是我们不希望在TorchScript里出现,那么可以这样:
class MyRNNLoop(torch.nn.Module):
def __init__(self):
super(MyRNNLoop, self).__init__()
self.cell = torch.jit.trace(MyCell(scripted_gate), (x, h))
def forward(self, xs):
h, y = torch.zeros(3, 4), torch.zeros(3, 4)
for i in range(xs.size(0)):
y, h = self.cell(xs[i], h)
return y, h
rnn_loop = torch.jit.script(MyRNNLoop())
print(rnn_loop.code)
def forward(self,
xs: Tensor) -> Tuple[Tensor, Tensor]:
h = torch.zeros([3, 4], dtype=None, layout=None, device=None, pin_memory=None)
y = torch.zeros([3, 4], dtype=None, layout=None, device=None, pin_memory=None)
y0, h0 = y, h
for i in range(torch.size(xs, 0)):
_0 = self.cell
_1 = torch.select(xs, 0, i)
_2 = _0.linear
weight = _2.weight
bias = _2.bias
_3 = torch.addmm(bias, _1, torch.t(weight), beta=1, alpha=1)
_4 = torch.gt(torch.sum(_3, dtype=None), 0)
if bool(_4):
_5 = _3
else:
_5 = torch.neg(_3)
_6 = torch.tanh(torch.add(_5, h0, alpha=1))
y0, h0 = _6, _6
return (y0, h0)
或者这样:
class WrapRNN(torch.nn.Module):
def __init__(self):
super(WrapRNN, self).__init__()
self.loop = torch.jit.script(MyRNNLoop())
def forward(self, xs):
y, h = self.loop(xs)
return torch.relu(y)
traced = torch.jit.trace(WrapRNN(), (torch.rand(10, 3, 4)))
print(traced.code)
def forward(self,
argument_1: Tensor) -> Tensor:
_0 = self.loop
h = torch.zeros([3, 4], dtype=None, layout=None, device=None, pin_memory=None)
h0 = h
for i in range(torch.size(argument_1, 0)):
_1 = _0.cell
_2 = torch.select(argument_1, 0, i)
_3 = _1.linear
weight = _3.weight
bias = _3.bias
_4 = torch.addmm(bias, _2, torch.t(weight), beta=1, alpha=1)
_5 = torch.gt(torch.sum(_4, dtype=None), 0)
if bool(_5):
_6 = _4
else:
_6 = torch.neg(_4)
h0 = torch.tanh(torch.add(_6, h0, alpha=1))
return torch.relu(h0)
保存和加载模型
traced.save('wrapped_rnn.zip')
loaded = torch.jit.load('wrapped_rnn.zip')
print(loaded)
print(loaded.code)
ScriptModule(
(loop): ScriptModule(
(cell): ScriptModule(
(dg): ScriptModule()
(linear): ScriptModule()
)
)
)
def forward(self,
argument_1: Tensor) -> Tensor:
_0 = self.loop
h = torch.zeros([3, 4], dtype=None, layout=None, device=None, pin_memory=None)
h0 = h
for i in range(torch.size(argument_1, 0)):
_1 = _0.cell
_2 = torch.select(argument_1, 0, i)
_3 = _1.linear
weight = _3.weight
bias = _3.bias
_4 = torch.addmm(bias, _2, torch.t(weight), beta=1, alpha=1)
_5 = torch.gt(torch.sum(_4, dtype=None), 0)
if bool(_5):
_6 = _4
else:
_6 = torch.neg(_4)
h0 = torch.tanh(torch.add(_6, h0, alpha=1))
return torch.relu(h0)
或可参考TorchScript部署