

Basics

Smart pointer basics……………………………………………………………………………...1

Which smart pointer to use?.......…………………………………………………………….6

Medium

How to implement the pimpl idiom by using unique_ptr ………………………12

How to Transfer unique_ptr s From a Set to Another Set……………………….18

Advanced

Custom deleters……………………….………………….………………….…………………...25

Changes of deleter during the life of a unique_ptr………………….………………..35

How to return a smart pointer and use covariance………………….………………..38

Smart pointer basics

One thing that can rapidly clutter your C++ code and hinder its readability is memory

management. Done badly, this can turn a simple logic into an inexpressive slalom of mess

management, and make the code lose control over memory safety.

The programming task of ensuring that all objects are correctly deleted is very low in terms of

levels of abstraction, and since writing good code essentially comes down to respecting levels of

abstraction, you want to keep those tasks away from your business logic (or any sort of logic for

that matter).

Smart pointers are made to deal with this effectively and relieve your code from the dirty work.

This series of posts will show you how to take advantage of them to make your code both more

expressive and more correct.

We're going to go deep into the subject and since I want everyone to be able to follow all of

this series, there is no prerequisite and we start off here with the basics of smart pointers.

The stack and the heap

Like many other languages, C++ has several types of memories, that correspond to different

parts of the physical memory. They are: the static, the stack, and the heap. The static is a topic

rich enough to deserve its own moment of glory, so here we focus on the stack and the heap only.

The stack

Allocating on the stack is the default way to store objects in C++:

int f(int a)

{

 if (a > 0)

 {

 std::string s = "a positive number";

 std::cout << s << '\n';

 }

 return a;

}

1

Here a and s are stored on the stack. Technically this means that a and s are stored next to one

another in memory because they have been pushed on a stacked maintained by the compiler.

However these concerns are not so relevant for daily work.

There is one important, crucial, even fundamental thing to know about the stack though. It is at

the basis of everything that follows in the rest of this series. And the good news is that it's very

easy:

Objects allocated on the stack are automatically destroyed when they go out of

scope.

You can re-read this a couple of times, maybe tatoo it on your forearm if needed, and print out a

T-shirt to your spouse reading this statement so that you can be reminded of it regularly.

In C++ a scope is defined by a pair of brackets ({ and }) except those used to initialize objects:

std::vector<int> v = {1, 2, 3}; // this is not a scope

if (v.size() > 0)

{ // this is the beginning of a scope

 ...

} // this is the end of a scope

And there are 3 ways for an object to go out of scope:

● encountering the next closing bracket (}),

● encountering a return statement,

● having an exception thrown inside the current scope that is not caught inside the current

scope.

So in the first code example, s is destroyed at the closing bracket of the if statement, and a is

destroyed at the return statement of the function.

The heap

The heap is where dynamically allocated objects are stored, that is to say objects that are

allocated with a call to new, which returns a pointer:

int * pi = new int(42);

After the above statement, pi points to an int object allocated on the heap.

2

Ok strictly speaking, the memory allocated by new is called the free store. The heap is the

memory allocated by malloc , calloc and realloc which are vestiges from C that are

normally no longer used in new code, and which we are ignoring in this post (but we'll talk more

about them later in the series). But the term 'heap' is so ubiquitous in developer jargon to talk

about any dynamically allocated memory that I am using it here in that sense.

Anyway to destroy an object allocated by new, we have to do it manually by calling delete:

delete pi;

Contrary to the stack, objects allocated on the heap are not destroyed automatically. This

offers the advantages of keeping them longer than the end of a scope, and without incurring any

copy except those of pointers which are very cheap. Also, pointers allow to manipulate objects

polymorphically: a pointer to a base class can in fact point to objects of any derived class.

But as a price to pay for this flexibility it puts you, the developer, in charge of their deletion.

And deleting a object on the heap is no trivial task: delete has to be called once and only once

to deallocate a heap-based object. If it is not called the object is not deallocated, and its memory

space is not reusable - this is called a memory leak. But on the other hand, a delete called more

than once on the same address leads to undefined behaviour.

And this is where the code gets cluttered and loses expressiveness (and sometimes even

correctness). Indeed, to make sure that all objects are correctly destroyed, the bookkeeping

varies from a simple delete to a complex system of flags in the presence of early returns for

example.

Also, some interfaces are ambiguous in terms of memory management. Consider the following

example:

House* buildAHouse();

As a caller of this function, should I delete the pointer it returns? If I don't and no one does then

it's a memory leak. But if I do and someone else does, then it's undefined behaviour. Between

the devil and the deep blue sea.

I think all this has led to a bad reputation of C++ as being a complex language in terms of

memory management.

But fortunately, smart pointers will take care of all of this for you.

3

RAII: the magic four letters

RAII is a very idiomatic concept in C++ that takes advantage of the essential property of the

stack (look up on your arm, or at the upper body of your spouse) to simplify the memory

management of objects on the heap. In fact RAII can even be used to make easy and safe the

management of any kind of resource, and not only memory. Oh and I'm not going to write what

these 4 letters mean because it is unimportant and confusing in my opinion. You can take them

as the name of someone, like superhero of C++ for example.

The principle of RAII is simple: wrap a resource (a pointer for instance) into an object, and

dispose of the resource in its destructor. And this is exactly what smart pointers do:

template <typename T>

class SmartPointer

{

public:

 explicit SmartPointer(T* p) : p_(p) {}

 ~SmartPointer() { delete p_; }

private:

 T* p_;

};

The point is that you can manipulate smart pointers as objects allocated on the stack. And the

compiler will take care of automatically calling the destructor of the smart pointer because...

objects allocated on the stack are automatically destroyed when they go out of

scope. And this will therefore call delete on the wrapped pointer. Only once. In a nutshell,

smart pointers behave like pointers, but when they are destroyed they delete the object they

point to.

The above code example was only made to get a grasp of RAII. But by no means is it a complete

interface of a realistic smart pointer.

First, a smart pointer syntactically behaves like a pointer in many way: it can be dereferenced

with operator* or operator-> , that is to say you can call *sp or sp->member on it. And it

is also convertible to bool, so that it can be used in an if statement like a pointer:

if (sp)

{

 …

4

which tests the nullity of the underlying pointer. And finally, the underlying pointer itself is

accessible with a .get() method.

Second, and maybe more importantly, there is a missing aspect from the above interface: it

doesn't deal with copy! Indeed, as is, a SmartPointer copied also copies the underlying

pointer, so the below code has a bug:

{

 SmartPointer<int> sp1(new int(42));

 SmartPointer<int> sp2 = sp1; // now both sp1 and sp2 point to

 // the same object

} // sp1 and sp2 are both destroyed, the pointer is deleted twice!

Indeed, it deletes the underlying object twice, leading to undefined behaviour.

How to deal with copy then? This is a feature on which the various types of smart pointer differ.

And it turns out that this lets you express your intentions in code quite precisely. Stay tuned, as

this is what we see in the next part of this series.

5

unique_ptr,shared_ptr,weak_ptr,
scoped_ptr, raw pointers - Knowing
your smart pointers

Like we saw when discussing what smart pointers are about, some active decision has to be

taken about how a smart pointer should be copied. Otherwise, a default copy constructor would

likely lead to undefined behaviour.

It turns out that there are several valid ways to go about this, and this leads to a variety of smart

pointers. And it is important to understand what these various smart pointers do because they

are ways to express a design into your code, and therefore also to understand a design by

reading code.

We see here the various types of pointers that exist out there, approximately sorted by

decreasing order of usefulness (according to me):

● std::unique_ptr

● raw pointer

● std::shared_ptr

● std::weak_ptr

● boost::scoped_ptr

● std::auto_ptr

std::unique_ptr

As of this writing, this is the smart pointer to use by default. It came into the standard in C++11.

The semantics of std::unique_ptr is that it is the sole owner of a memory resource. A

std::unique_ptr will hold a pointer and delete it in its destructor (unless you customize this,

which is the topic of another part of the series).

This allows you to express your intentions in an interface. Consider the following function:

std::unique_ptr<House> buildAHouse();

6

It tells you that it gives you a pointer to a house, of which you are the owner. No one else will

delete this pointer except the unique_ptr that is returned by the function. And since you

get the ownership, this gives you confidence that you are free to modify the value of the pointed

to object.

Note that std::unique_ptr is the preferred pointer to return from a factory function. Indeed,

on the top of taking care of handling the memory, std::unique_ptr wraps a normal pointer

and is therefore compatible with polymorphism.

But this works the other way around too, by passing an std::unique_ptr as a parameter:

class House

{

public:

 House(std::unique_ptr<PileOfWood> wood);

 …

In this case, the house takes ownership of the PileOfWood .

Note though that even when you receive a unique_ptr, you're not guaranteed that no one else

has access to this pointer. Indeed, if another context keeps a copy of the pointer inside your

unique_ptr , then modifying the pointed to object through the unique_ptr object will of

course impact this other context. If you don't want this to happen, the way to express it is by

using a unique_ptr to const:

std::unique_ptr<const House> buildAHouse();

 // for some reason, I don't want you

 // to modify the house you're being passed

To ensure that there is only one unique_ptr that owns a memory resource, std::unique_ptr

cannot be copied. The ownership can however be transferred from one unique_ptr to another

(which is how you can pass them or return them from a function) by moving a unique_ptr

into another one.

A move can be achieved by returning an std::unique_ptr by value from a function, or explicitly

in code:

std::unique_ptr<int> p1 = std::make_unique<int>(42);

std::unique_ptr<int> p2 = move(p1); // now p2 hold the resource

 // and p1 no longer hold anything

7

Raw pointers

"What?", you may be thinking. "We're talking about smart pointers, what are raw pointers doing

here??"

Well, even if raw pointers are not smart pointers, they aren't 'dumb' pointers either. In fact there

are legitimate reasons to use them although these reasons don't happen often. They share a lot

with references, but the latter should be preferred except in some cases (but this is the topic of

another article).

For now I only want to focus on what raw pointers and references express in code: raw

pointers and references represent access to an object, but not ownership. In fact,

this is the default way of passing objects to functions and methods:

void renderHouse(House const& house);

This is particularly relevant to note when you hold an object with a unique_ptr and want to

pass it to an interface. You don’t pass the unique_ptr , nor a reference to it, but rather a

reference to the pointed to object:

std::unique_ptr<House> house = buildAHouse();

renderHouse(*house);

std::shared_ptr

shared_ptr entered the standard in C++11, but appeared in Boost well before that.

A single memory resource can be held by several std::shared_ptrs at the same

time. The shared_ptr s internally maintain a count of how many of them there are holding

the same resource, and when the last one is destroyed, it deletes the memory resource.

Therefore std::shared_ptr allows copies, but with a reference-counting mechanism to make

sure that every resource is deleted once and only once.

At first glance, std::shared_ptr looks like the panacea for memory management, as it can

be passed around and still maintain memory safety.

But std::shared_ptr should not be used by default, for several reasons:

● Having several simultaneous holders of a resource makes for a more complex system

than with one unique holder, like with std::unique_ptr .

8

● Having several simultaneous holders of a resource makes thread-safety harder,

● It makes the code counter-intuitive when an object is not shared in terms of the

domain and still appears as "shared" in the code for a technical reason,

● It can incur a performance cost, both in time and memory, because of the bookkeeping

related to the reference-counting.

One good case for using std::shared_ptr though is when objects are shared in the

domain. Using shared pointers then reflects it in an expressive way. Typically, the nodes of a

graphs are well represented as shared pointers, because several nodes can hold a reference to

one other node.

std::weak_ptr

weak_ptr entered the language in C++11 but appeared in Boost well before that.

std::weak_ptr s can hold a reference to a shared object along with other

std::shared_ptr s, but they don't increment the reference count. This means that if no more

std::shared_ptr are holding an object, this object will be deleted even if some weak pointers

still point to it.

For this reason, a weak pointer needs to check if the object it points to is still alive. To do this, it

has to be copied into to a std::shared_ptr :

void useMyWeakPointer(std::weak_ptr<int> wp)

{

 if (std::shared_ptr<int> sp = wp.lock())

9

 {

 // the resource is still here and can be used

 }

 else

 {

 // the resource is no longer here

 }

}

A typical use case for this is about breaking shared_ptr circular references. Consider the

following code:

struct House

{

 std::shared_ptr<House> neighbour;

};

std::shared_ptr<House> house1 = std::make_shared<House>();

std::shared_ptr<House> house2 = std::make_shared<House>();;

house1->neighbour = house2;

house2->neighbour = house1;

None of the houses ends up being destroyed at the end of this code, because the shared_ptr s

points into one another. But if one is a weak_ptr instead, there is no longer a circular

reference.

Another use case pointed out by this answer on Stack Overflow is that weak_ptr can be used to

maintain a cache. The data may or may not have been cleared from the cache, and the

weak_ptr references this data.

boost::scoped_ptr

scoped_ptr is present in Boost but was not included in the standard (at least as of C++17).

It simply disables the copy and even the move construction. So it is the sole owner of a resource,

and its ownership cannot be transferred. Therefore, a scoped_ptr can only live inside... a

scope. Or as a data member of an object. And of course, as a smart pointer, it keeps the

advantage of deleting its underlying pointer in its destructor.

10

std::auto_ptr

auto_ptr was present in C++98, has been deprecated in C++11 and removed from the

language in C++17.

It aimed at filling the same need as unique_ptr , but back when move semantics didn't exist in

C++. It essentially does in its copy constructor what unique_ptr does in its move

constructor. But auto_ptr is inferior to unique_ptr and you shouldn't use it if you have

access to unique_ptr , because it can lead to erroneous code:

std::auto_ptr<int> p1(new int(42));

std::auto_ptr<int> p2 = p1; // it looks like p2 == p1, but no!

// p1 is now empty and p2 uses the

resource

You know Andersen’s The Ugly Duckling, where a poor little ducking is rejected by its siblings

because it’s not good-looking, and who turns out to grow into a beautiful swan? The story of

std::auto_ptr is like this but going back in time: std::auto_ptr started by being the way

to go to deal with ownership, and now it looks terrible in front of its siblings. It’s like The Ugly

Benjamin Button Duckling, if you will.

:)

In the next part of this series we will see how to simplify complex memory management by using

the more advanced features of std::unique_ptr .

11

How to implement the pimpl idiom by
using unique_ptr

The pimpl, standing for "pointer to implementation" is a widespread technique to cut

compilation dependencies. We will see how to implement the pimpl idiom with a smart

pointer.

Indeed, the pimpl idiom has an owning pointer in charge of managing a memory resource, so it

sounds only logical to use a smart pointer, such as std::unique_ptr for example.

The pimpl

Just to have a common basis for discussion, let’s quickly go over the pimpl idiom by putting

together an example that uses it.

Say we have a class representing a fridge (yeah why not?), that works with an engine that it

contains. Here is the header of this class:

#include "Engine.h"

class Fridge

{

public:

 void coolDown();

private:

 Engine engine_;

};

(the contents of the Engine class are not relevant here).

12

And here is its implementation file:

#include "Fridge.h"

void Fridge::coolDown()

{

 /* ... */

}

Now there is an issue with this design (that could be serious or not, depending on how many

clients Fridge has). Since Fridge.h #include s Engine.h, any client of the Fridge class will

indirectly #include the Engine class. So when the Engine class is modified, all the clients of

Fridge have to recompile, even if they don't use Engine directly.

The pimpl idiom aims at solving this issue by adding a level of indirection, FridgeImpl , that

takes on the Engine .

The header file becomes:

class Fridge

{

public:

 Fridge();

 ~Fridge();

 void coolDown();

private:

 class FridgeImpl;

 FridgeImpl* impl_;

};

Note that it no longer #include Engine.h.

And the implementation file becomes:

#include "Engine.h"

#include "Fridge.h"

class FridgeImpl

{

public:

 void coolDown()

 {

13

 /* ... */

 }

private:

 Engine engine_;

};

Fridge::Fridge() : impl_(new FridgeImpl) {}

Fridge::~Fridge()

{

 delete impl_;

}

void Fridge::coolDown()

{

 impl_->coolDown();

}

The class now delegates its functionalities and members to FridgeImpl , and Fridge only has to

forward the calls and manage the life cycle of the impl_ pointer.

What makes it work is that pointers only need a forward declaration to compile. For

this reason, the header file of the Fridge class doesn't need to see the full definition of

FridgeImpl , and therefore neither do Fridge 's clients.

Using std::unique_ptr to manage the life cycle

Today it's a bit unsettling to leave a raw pointer managing its own resource in C++. A natural

thing to do would be to replace it with an std::unique_ptr (or with another smart pointer).

This way the Fridge destructor no longer needs to do anything, and we can leave the compiler

automatically generate it for us.

The header becomes:

#include <memory>

class Fridge

{

public:

 Fridge();

 void coolDown();

private:

14

 class FridgeImpl;

 std::unique_ptr<FridgeImpl> impl_;

};

And the implementation file becomes:

#include "Engine.h"

#include "Fridge.h"

class FridgeImpl

{

public:

 void coolDown()

 {

 /* ... */

 }

private:

 Engine engine_;

};

Fridge::Fridge() : impl_(new FridgeImpl) {}

Right? Let's build the program…

Oops, we get the following compilation errors!

use of undefined type 'FridgeImpl'

can't delete an incomplete type

Can you see what's going on here?

Destructor visibility

There is a rule in C++ that says that deleting a pointer leads to undefined behaviour if:

● this pointer has type void* , or

● the type pointed to is incomplete, that is to say is only forward declared, like

FridgeImpl in our header file.

std::unique_ptr happens to check in its destructor if the definition of the type is visible

before calling delete. So it refuses to compile and to call delete if the type is only forward

declared.

15

In fact, std::unique_ptr is not the only component to provide this check: Boost also

proposes the checked_delete function and its siblings to make sure that a call to delete is

well-formed.

Since we removed the declaration of the destructor in the Fridge class, the compiler took over

and defined it for us. But compiler-generated methods are declared inline, so they are

implemented in the header file directly. And there, the type of FridgeImpl is incomplete.

Hence the error.

The fix would then be to declare the destructor and thus prevent the compiler from doing it for

us. So the header file becomes:

#include <memory>

class Fridge

{

public:

 Fridge();

 ~Fridge();

 void coolDown();

private:

 class FridgeImpl;

 std::unique_ptr<FridgeImpl> impl_;

};

And we can still use the default implementation for the destructor that the compiler would have

generated. But we need to put it in the implementation file, after the definition of

FridgeImpl:

#include "Engine.h"

#include "Fridge.h"

class FridgeImpl

{

public:

 void coolDown()

 {

 /* ... */

 }

private:

 Engine engine_;

};

16

http://www.boost.org/doc/libs/1_64_0/libs/core/doc/html/core/checked_delete.html

Fridge::Fridge() : impl_(new FridgeImpl) {}

Fridge::~Fridge() = default;

This program compiles, run and works.

There are plenty other important aspects to consider when implementing a pimpl in C++. For

this I advise you to have a look at the dedicated section in Herb Sutter's Exceptional C++.

17

How to Transfer unique_ptrs From
a Set to Another Set

Transferring a std::unique_ptr to another std::unique_ptr is an easy thing to do:

std::unique_ptr<int> p1 = std::make_unique<int>(42);

std::unique_ptr<int> p2;

p2 = std::move(p1); // the contents of p1 have been transferred to p2

Easy peasy, lemon squeezy.

Now what if those unique_ptr s are living inside of two sets? It should be just as easy to

transfer those in the first set over to the second set, right?

It turns out that it's not easy, neither peasy, and even less lemon squeezy. Unless you have

C++17, in which case it's a breeze. But before C++17, it's not. Here are various alternatives you

can use to approach this.

Let's see the motivating problem first.

The case: transfering sets of unique_ptrs

18

We start by seeing what a std::set of std::unique_ptr would represent, and then we see

what problem happens when trying to transfer the contents of one set to another.

Sets of unique_ptrs: unique and polymorphic

To begin with, you may have wondered why do a unique_ptr on an int as in the above

example. Except for showing a simple example, well, it has no use at all.

A more realistic case would be one of runtime polymorphism via inheritance, with a Base class

that can have Derived classes:

And we would use the base class polymorphically by holding it with some sort of handle (pointer

or reference). To encapsulate the memory management, we would use a

std::unique_ptr<Base> .

Now if we want a collection of several objects implementing Base, but that could be of any

derived classes, we can use a collection of unique_ptr<Base>s.

Finally, we may want to prevent our collection to have duplicates. This is what std::set does.

Note that to implement this constraint, std::set needs a way to compare its objects together.

Indeed, by declaring a set this way:

std::set<std::unique_ptr<Base>>

the comparison between elements of the set will call the operator< of std::unique_ptr ,

which compares the memory addresses of the pointers inside them.

In most cases, this is not what you want. When we think "no duplicates", it generally means "no

logical duplicates" as in: no two elements have the same value. And not "no two elements are

located at the same address in memory".

19

To implement no logical duplicates, we need to call the operator< on Base (provided that it

exists, maybe using an id provided by Base for instance) to compare elements and determines

whether they are duplicates. And to make the set use this operator, we need to customize the

comparator of the set:

struct ComparePointee

{

 template<typename T>

bool operator()(std::unique_ptr<T> const& up1, std::unique_ptr<T>

const& up2)

 {

 return *up1 < *up2;

 }

};

std::set<std::unique_ptr<int>, ComparePointee> mySet;

To avoid writing this type every time we instantiate such a set in code, we can hide its technical

aspects behind an alias:

template<typename T>

using UniquePointerSet = std::set<std::unique_ptr<T>,ComparePointee>;

Transferring unique_ptrs between two sets

Ok. We're all set (ha-ha) and ready to transfer the elements of a set to another one. Here are our

two sets:

UniquePointerSet<Base> source;

source.insert(std::make_unique<Derived>());

UniquePointerSet<Base> destination;

To transfer elements efficiently, we use the insert method:

destination.insert(begin(source), end(source));

But this leads to a compilation error!

error: use of deleted function 'std::unique_ptr<_Tp,

_Dp>::unique_ptr(const std::unique_ptr<_Tp, _Dp>&) [with _Tp =

Base; _Dp = std::default_delete<Base>]'

20

https://www.fluentcpp.com/2017/03/28/inserting-several-elements-into-an-stl-container/

Indeed, the insert methods attemps to make a copy of the unique_ptr elements.

What to do then?

C++17's new method on set: merge

sets and maps in C++ are internally implemented as trees. This lets them ensure the algorithmic

complexities guaranteed by the methods of their interface. Before C++17, it didn't show in the

interface.

C++17 adds the merge method to sets:

destination.merge(source);

This makes destination take over the nodes of the tree inside of source. It's like performing a

splicing on lists. So after executing this line, destination has the elements that source had, and

source is empty.

And since it's only the nodes that get modified, and not what's inside them, the unique_ptr s

don't feel a thing. They are not even moved.

destination now has the unique_ptr s, end of story.

Now if you don't have C++17 in production, which is the case of a lot of people at the time I'm

writing these lines, what can you do?

We can't move from a set

The standard algorithm to move elements from a collection to another collection is std::move .

Here is how it works with std::vector :

std::vector<std::unique_ptr<Base>> source;

source.push_back(std::make_unique<Derived>());

std::vector<std::unique_ptr<Base>> destination;

std::move(begin(source),end(source),std::back_inserter(destination));

after the execution of this line, destination has the elements that source had and source is

not empty, but has empty unique_ptr s.

21

Let's try to do the same thing with our sets now:

UniquePointerSet<Base> source;

source.insert(std::make_unique<Derived>());

UniquePointerSet<Base> destination;

std::move(begin(source), end(source), std::inserter(destination,

end(destination)));

We get the same compilation error as in the beginning, some unique_ptrs are getting copied:

error: use of deleted function 'std::unique_ptr<_Tp,

_Dp>::unique_ptr(const std::unique_ptr<_Tp, _Dp>&)

This may look surprising. The purpose of the std::move algorithm is to avoid making copies

on the unique_ptr elements and move them instead, so why are they being copied??

The answer lies in how the set provides access to its elements. When dereferenced, a set's

iterator does not return a unique_ptr& , but rather a const unique_ptr& . It is to make sure

that the values inside of the set don't get modified without the set being aware of it. Indeed, it

could break its invariant of being sorted.

So here is what happens:

● std::move dereferences the iterator on set and gets a const unique_ptr& ,
● it calls std::move on that references, thus getting a const unique_ptr&& ,
● it calls the insert method on the insert output iterator and passes it this const

unique_ptr&& ,
● the insert method has two overloads: one that takes a const unique_ptr& , and one

that takes a unique_ptr&& . Because of the const in the type we're passing, the compiler

cannot resolve this call to the second method, and calls the first one instead.

Then the insert output iterator calls calls the insert overload on the set that takes a const

unique_ptr& and in turn calls the copy constructor of unique_ptr with that lvalue

reference, and that leads to the compilation error.

Making a sacrifice

So before C++17, moving elements from a set doesn't seem to be possible. Something has to

give: either moving, or the sets. This leads us to two possible aspects to give up on.

22

Keeping the set but paying up for the copies

To give up on the move and accepting to copy the elements from a set to another, we need to

make a copy of the contents pointed by the unique_ptr s.

For this, let's assume that Base has is a polymorphic clone method overridden in Derived :

class Base

{

public:

 virtual std::unique_ptr<Base> cloneBase() const = 0;

 // rest of Base...

};

class Derived : public Base

{

public:

 std::unique_ptr<Base> cloneBase() const override

 {

 return std::make_unique<Derived>(*this);

 }

 // rest of Derived...

};

At call site, we can make copies of the unique_ptrs from a set over to the other one, for instance

this way:

auto clone = [](std::unique_ptr<Base> const& pointer){ return

pointer->cloneBase(); };

std::transform(begin(source), end(source), std::inserter(destination,

end(destination)), clone);

Or, with a for loop:

for (auto const& pointer : source)

{

 destination.insert(pointer->cloneBase());

}

23

Keeping the move and throwing away the set

The set that doesn't let the move happen is the source set. If you only need the destination to

have unique elements, you can replace the source set by a std::vector .

Indeed, std::vector does not add a const to the value returned by its iterator. We can

therefore move its elements from it with the std::move algorithm:

std::vector<std::unique_ptr<Base>> source;

source.push_back(std::make_unique<Derived>(42));

std::set<std::unique_ptr<Base>> destination;

std::move(begin(source), end(source), std::inserter(destination,

end(destination)));

Then the destination set contains a unique_ptr that has the contents that used to be in the

one of the source, and the source vector now contains an empty unique_ptr .

Live at head

You can see that there are ways around the problem of transferring unique_ptr s from a set to

another one. But the real solution is the merge method of std::set in C++17.

The standard library is getter better and better as the language evolves. Let's do what we can to

move (ha-ha) to the latest version of C++, and never look back.

24

Custom deleters

Let's take the example of a House class, that carries its building Instructions with it, which are

polymorphic and can be either a Sketch or a full-fledged Blueprint :

One way to deal with the life cycle of the Instructions is to store them as a unique_ptr in

the House . And say that a copy of the house makes a deep copy of the instructions:

class House

{

public:

 explicit House(std::unique_ptr<Instructions> instructions)

 : instructions_(std::move(instructions)) {}

 House(House const& other)

 : instructions_(other.instructions_->clone()) {}

private:

 std::unique_ptr<Instructions> instructions_;

};

Indeed, Instructions has a polymorphic clone, which is implemented by the derived classes:

class Instructions

{

public:

 virtual std::unique_ptr<Instructions> clone() const = 0;

 virtual ~Instructions(){};

25

};

class Sketch : public Instructions

{

public:

 std::unique_ptr<Instructions> clone() const

 {

 return std::unique_ptr<Instructions>(new Sketch(*this));

 }

};

class Blueprint : public Instructions

{

public:

 std::unique_ptr<Instructions> clone() const

 {

 return std::unique_ptr<Instructions>(new Blueprint(*this));

 }

};

Here is a way to construct a house:

enum class BuildingMethod

{

 fromSketch,

 fromBlueprint

};

House buildAHouse(BuildingMethod method)

{

 if (method == BuildingMethod::fromSketch)

 return House(std::unique_ptr<Instructions>(new Sketch));

 if (method == BuildingMethod::fromBlueprint)

 return House(std::unique_ptr<Instructions>(new Blueprint));

 throw InvalidBuildMethod();

}

where the building method may come from user input.

The situations gets more challenging when objects can come from another memory source, like

the stack for example:

26

Blueprint blueprint;

House house(???); // how do I pass the blueprint to the house?

Indeed, we can't bind a unique_ptr to a stack-allocated object, because calling delete on it

would cause undefined behaviour.

One solution would be to make a copy of the blueprint and allocating it on the heap. This may be

OK, or it may be costly (I've come across a similar situation once where it was the bottleneck of

the program).

But passing objects allocated on the stack is a legitimate need. We then don't want the House to

destroy the Instructions in its destructor when the object comes from the stack.

How can std::unique_ptr help here?

Seeing the real face of std::unique_ptr

Most of the time, the C++ unique pointer is used as std::unique_ptr<T> . But its complete

type has a second template parameter, its deleter:

template<

 typename T,

 typename Deleter = std::default_delete<T>

> class unique_ptr;

std::default_delete<T> is a function object that calls delete when invoked. But it is only

the default type for Deleter, and it can be changed for a custom deleter.

This opens the possibility to use unique pointers for types that have a specific code for disposing

of their resources. This happens in legacy code coming from C where a function typically takes

care of deallocating an object along with its contents:

struct GizmoDeleter

{

 void operator()(Gizmo* p)

 {

 oldFunctionThatDeallocatesAGizmo(p);

 }

};

using GizmoUniquePtr = std::unique_ptr<Gizmo, GizmoDeleter>;

27

(By the way, this technique is quite helpful as a step to simplify legacy code, in order to make it

compatible with std::unique_ptr .)

Now armed with this feature, let's go back to our motivating scenario.

Using several deleters

Our initial problem was that we wanted the unique_ptr to delete the Instructions, except when

they came from the stack in which case we wanted it to leave them alone.

The deleter can be customized to delete or not delete, given the situation. For this we can use

several deleting functions, all of the same function type (being

void(*)(Instructions*)):

using InstructionsUniquePtr = std::unique_ptr<Instructions,

void(*)(Instructions*)>;

The deleting functions are then:

void deleteInstructions(Instructions* instructions){ delete

instructions;}

void doNotDeleteInstructions(Instructions* instructions){}

One deletes the object, and the other doesn't do anything.

To use them, the occurrences of std::unique_ptr<Instructions> needs to be replaced

with InstructionUniquePtr , and the unique pointers can be constructed this way:

if (method == BuildingMethod::fromSketch)

 return House(InstructionsUniquePtr(new Sketch,

deleteInstructions));

if (method == BuildingMethod::fromBlueprint)

 return House(InstructionsUniquePtr(new Blueprint,

deleteInstructions));

Except when the parameter comes from the stack, in which case the no-op deleter can be used:

Blueprint blueprint;

House house(InstructionsUniquePtr(&blueprint,

doNotDeleteInstructions));

28

As iaanus pointed out on Reddit, we should note that if the unique_ptr is moved out of the

scope of the stack object, it would point to a resource that doesn't exist any more. Using the

unique_ptr after this point causes a memory corruption.

And, like Bart noted in a comment, we should note that if the constructor of House were to take

more than one argument then we should declare the construction of the unique_ptr in a

separate statement, like this:

InstructionsUniquePtr instructions(new Sketch, deleteInstructions);

return House(move(instructions), getHouseNumber());

Indeed there could be a memory leak if an exception was thrown (cf Item 17 of Effective C++).

And also that when we don't use custom deleters, we shouldn't use new directly, but prefer

std::make_unique that lets you pass the arguments for the construction of the pointed-to

object.

Safety belt

If you're careful to avoid memory corruptions, using a custom deleter solves the initial problem

but it induces a little change in the semantics of the passed argument, that can be at the source

of many bugs.

In general, holding an std::unique_ptr means being its owner. And this means that it is OK

to modify the pointed-to object. But in the case where the object comes from the stack (or from

wherever else when it is passed with the no-op deleter), the unique pointer is just holding a

reference to an externally owned object. In this case, you don't want the unique pointer to

modify the object, because it would have side effects on the caller, and this would makes the

code much more harder to reason about.

Therefore, when using this technique make sure to work on pointer to const objects:

using InstructionsUniquePtr =

 std::unique_ptr< const Instructions, void(*)(const
Instructions*)>;

and the deleters become:

void deleteInstructions(const Instructions* instructions){ delete
instructions;}

void doNotDeleteInstructions(const Instructions* instructions){}

29

This way, the unique pointer can't cause trouble outside of the class. This will save you a sizable

amount of debugging.

Custom deleters are ugly

When you look at the expression to define a unique_ptr with a custom deleter:

std::unique_ptr<const Computer, void(*)(const Computer*)>;

This is dense enough that looking at it too long is dangerous for your eyes. We shouldn’t spread

such an expression all over the production code. So the natural way to go about this is to write

an alias:

using ComputerConstPtr = std::unique_ptr<const Computer,

void(*)(const Computer*)>;

which fares better in an interface:

void plugIn(ComputerConstPtr computer);

But the ugliness is still there when we create new instances of the unique_ptr because we have

to pass a deleter each time:

ComputerConstPtr myComputer(new Computer, deleteComputer);

Where we defined deleters:

void deleteComputer(const Computer* computer){ delete computer;}

void doNotDeleteComputer(const Computer* computer){}

This poses three issues. The first one is that we shouldn't have to specify anything in the case

where we want the smart pointer to delete its resource. It's what smart pointers are made for in

the first place.

Granted, this one it particular because it could have to not delete its resource for some

occurrences. But why would the nominal case of deleting it be burdened because of the special

case?

The second issue appears with namespaces, and comes down to verbosity. Imagine that our

Computer type was inside a nested namespace, like often in production code:

namespace store

{

30

 namespace electronics

 {

 namespace gaming

 {

 class Computer

 {

 // ...

 };

 using ComputerConstPtr = std::unique_ptr<const Computer,

void(*)(const Computer*)>;

 void deleteComputer(const Computer* computer);

 void doNotDeleteComputer(const Computer* computer);

 }

 }

}

And then at call site:

store::electronics::gaming::ComputerConstPtr myComputer(new

store::electronics::gaming::Computer,

store::electronics::gaming::deleteComputer);

This is a tough line of code. And for saying little.

The last issue is that we define a delete and a doNotDelete function for each type on which

we want to custom deleters. And even if their implementation has nothing specific to the

type Computer , or any other type. However, note that even templating the deleters this way:

template<typename T>

void doDelete(const T* p)

{

 delete p;

}

template<typename T>

void doNotDeleteComputer(const T* x)

{

}

...doesn't make the code lighter. Indeed, we still need to specify the template type when

instantiating the pointer:

31

store::electronics::gaming::ComputerConstPtr myComputer(new

store::electronics::gaming::Computer,

doDelete <store::electronics::gaming::Computer>);

A unique interface

Here is what Fluent C++ reader Sergio Adán suggested, and that can fix the two above issues:

use the same interface for all custom deleters on all types.

This can be defined in another namespace, a technical one. Let's call this namespace util for

the example.

Then in this namespace, we write all the common code that creates the custom unique_ptr .

Let's call this helper MakeConstUnique for instance. Here is its code:

namespace util

{

 template<typename T>

 void doDelete(const T* p)

 {

 delete p;

 }

 template<typename T>

 void doNotDelete(const T* x)

 {

 }

 template<typename T>

 using CustomUniquePtr = std::unique_ptr<const T, void(*)(const

T*)>;

 template<typename T>

 auto MakeConstUnique(T* pointer)

 {

 return CustomUniquePtr<T>(pointer, doDelete<T>);

 }

 template<typename T>

 auto MakeConstUniqueNoDelete(T* pointer)

 {

 return CustomUniquePtr<T>(pointer, doNotDelete<T>);

32

 }

}

With this code, no need to define anything else to start using a unique_ptr on a particular

type with custom deleters. For instance, to create an instance of a unique_ptr that does a

delete of its resource when it gets out of scope, we write:

auto myComputer = util::MakeConstUnique(new

store::electronics::gaming::Computer);

And to create one that does not delete its resource:

auto myComputer = util::MakeConstUniqueNoDelete(new

store::electronics::gaming::Computer);

What is interesting about this interface is that:

● there is no longer any mention of delete in the common case,

● we can now use auto , thanks to the return type of MakeConstUnique .

Note that all this made us go down to one occurrence of the namespace of Computer ,

instead of three.

Specific deleters

Now what if, for some reason, we didn't want to call delete on the class Computer, but a

particular dedicated function? This can happen in types coming from C for example:

void deleteComputer(const Computer* computer)

{

 specificFunctionThatFreesAComputer(computer);

}

To keep using MakeConstUnique with this type, we can make a total specialization of this

template function for the type Computer . We could do this in the module defining Computer,

by reopening the util namespace:

namespace util

{

 template<>

33

 auto MakeConstUnique(store::electronics::gaming::Computer*

pointer)

 {

 return

CustomUniquePtr<store::electronics::gaming::Computer>(pointer,

specificFunctionThatFreesAComputer);

 }

}

In this case, the client code probably doesn't allocate its pointer with new either.

Whichever way, a resource must be disposed of

Let's now test our interface, by adding a bit of logging in the Computer class:

class Computer

{

public:

 explicit Computer(std::string&& id) : id_(std::move(id)){}

 ~Computer(){std::cout << id_ << " destroyed\n";}

private:

 std::string id_;

};

And let's pass both a resource on the heap and a resource on the stack to our interface:

store::electronics::gaming::Computer c("stack-based computer");

auto myHeapBasedComputer = util::MakeConstUnique(new

store::electronics::gaming::Computer("heap-based computer"));

auto myStackBasedComputer = util::MakeConstUniqueNoDelete(&c);

When run this code outputs:

Heap-based computer destroyed

Stack-based computer destroyed

34

Changes of deleter during the life of a
unique_ptr

Let’s use a unique_ptr with a custom deleter and see when that deleter can change

during the life of the unique_ptr .

Here is a toy example we use an unique_ptr on int , with a customisable deleter:

using IntDeleter = void(*)(int*);

using IntUniquePtr = std::unique_ptr<int, IntDeleter>;

One deleter is to be used for even numbers, and another one for odd numbers:

void deleteEvenNumber(int* pi)

{

 std::cout << "Delete even number " << *pi << '\n';

 delete pi;

}

void deleteOddNumber(int* pi)

{

 std::cout << "Delete odd number " << *pi << '\n';

 delete pi;

}

Assigning from another std::unique_ptr

Consider the following code:

IntUniquePtr p1(new int(42), deleteEvenNumber);

IntUniquePtr p2(new int(43), deleteOddNumber);

p1 = move(p2);

p1 , that contains an even number with the appropriate deleter, is taking over the ownership of

the resource in p2 . The question is: how will it destroy this resource? Will it use the deleter it

was built with, or rather bring over the deleter of p2 along with the ownership of its resource?

35

Here is what this program outputs (the deleters are printing out the info - look at their code at

the top of the article):

Delete even number 42

Delete odd number 43

Each resource is deleted with the correct deleter, which means that the assignment did bring

over the deleter. This makes sense because the resources would not be disposed of with the

correct deleter otherwise.

Resetting the pointer

Another way to change the resource contained in an std::unique_ptr is to call its reset

method, like in the following simple example:

std::unique_ptr<int> p1(new int(42));

p1.reset(new int(43));

The reset method calls the deleter on the current resource (42), and then takes on the new one

(43).

But the reset method only takes one argument, which is the new resource. It cannot be passed

a deleter along with this new resource. For that reason, it can no longer be used directly in our

example with even and odd numbers. Indeed, the following code:

IntUniquePtr p1(new int(42), deleteEvenNumber);

p1.reset(new int(43)); // can't pass deleteOddNumber

naturally outputs:

Delete even number 42

Delete even number 43

which is incorrect in our case.

In fact we could manually change the deleter in a separate statement, by exploiting the fact that

the get_deleter method of unique_ptr returns the deleter by non-const reference (thanks

to Marco Arena for pointing this out):

p1.get_deleter() = deleteOddNumber;

But why doesn't reset have a deleter argument? And how to hand over a new resource to an

std::unique_ptr along with its appropriate deleter in a single statement?

36

Howard Hinnant, who is amongst many other things lead designer and author of the

std::unique_ptr component, answers this question on Stack Overflow:

Here is how to use his answer in our initial example:

IntUniquePtr p1(new int(42), deleteEvenNumber);

p1 = IntUniquePtr(new int(43), deleteOddNumber);

which gives the following desired output:

Delete even number 42

Delete odd number 43

37

How to Return a Smart Pointer AND
Use Covariance

By Raoul Borges

in C++, it seems that we can have covariant return, or smart pointer return, but not both. Or can

we?

Note: In this discussion, we will avoid type erasure as it generates a lot of boiler plate, which

goes against our objective here. We will assume instead a fully generic OO solution. Also, this

is not a discovery: Partial implementations of the techniques shown below can easily be found

on the Internet. We are standing on the shoulders of the giants out there, and just compiling it

all together in one post.

The problem: Covariant return type vs. smart pointers

C++ has support for covariant return type. That is, you can have the following code:

struct Base {};

struct Derived : Base {};

38

https://en.wikipedia.org/wiki/Covariant_return_type

struct Parent

{

 virtual Base * foo();

} ;

struct Child : Parent

{

 virtual Derived * foo() override ;

} ;

Here, we expect the foo method from Child to return Base * for a successful overriding (and

compilation!). With the covariant return type, we can actually replace Base * by any of its

derived types. For example, Derived * .

This works for pointers, and for references... But the moment you try to use smart pointers:

#include <memory>

struct Base {};

struct Derived : Base {};

struct Parent

{

 virtual std::unique_ptr<Base> foo();

} ;

struct Child : Parent

{

 virtual std::unique_ptr<Derived> foo() override ;

} ;

... the compiler generates an error.

Use cases

Since the problem is general, let’s take a wide panel of use cases with increasing complexity:

● Simple hierarchy:

39

● Multiple inheritance:

● Deep hierarchy:

● Diamond inheritance:

40

By handling all those cases in a natural way, the solution should be usable for most production

problems.

Preamble: Separation of concerns + private virtual
function

Instead of having one clone member function handling everything, we will separate it into two

member functions. In the following piece of code:

class some_class

{

public:

 std::unique_ptr<some_class> clone() const

 {

 return std::unique_ptr<some_class>(this->clone_impl());

 }

private:

 virtual some_class * clone_impl() const

 {

 return new some_class(*this) ;

 }

};

The first function, clone_impl() , does the actual work of cloning using the copy-constructor.

It offers a strong guarantee (as long as the copy-constructor offers it), and transfers the

ownership of the pointer to the newly created object. While this is usually unsafe, we assume

that in this case no one can call this function except the clone() function, which is enforced by

the private access of clone_impl() .

41

The second function, clone() , retrieves the pointer, and gives its ownership to a unique_ptr.

This function cannot fail by itself, so it offers the same strong guarantee as clone_impl() .

Simple Hierarchy: Covariance + Name hiding

Using the technique above, we can now produce a simple OO hierarchy:

class cloneable

{

public:

 virtual ~cloneable() {}

 std::unique_ptr<cloneable> clone() const

 {

 return std::unique_ptr<cloneable>(this->clone_impl());

 }

private:

 virtual cloneable * clone_impl() const = 0;

};

///

class concrete : public cloneable

{

public:

 std::unique_ptr<concrete> clone() const

 {

 return std::unique_ptr<concrete>(this->clone_impl());

 }

private:

 virtual concrete * clone_impl() const override

 {

 return new concrete(*this);

42

 }

};

int main()

{

 std::unique_ptr<concrete> c = std::make_unique<concrete>();

 std::unique_ptr<concrete> cc = c->clone();

 cloneable * p = c.get();

 std::unique_ptr<clonable> pp = p->clone();

}

Do you see what we did, here?

By separating the concerns, we were able to use covariance at each level of the hierarchy to

produce a clone_impl member function returning the exact type of pointer we wanted.

And using a little (usually) annoying feature in C++, name hiding (i.e. when declaring a name in

a derived class, this name hides all the symbols with the same name in the base class), we hide

(not override) the clone() member function to return a smart pointer of the exact type we

wanted.

When cloning from a concrete, we obtain a unique_ptr<concrete> , and when cloning from

a cloneable, we obtain a unique_ptr<cloneable> .

One could get uneasy at the idea of having a clone_impl member function using a RAII-unsafe

transfer of ownership, but the problem is mitigated as the member function is private, and is

called only by clone. This limits the risk as the user of the class can’t call it by mistake.

This solves the problem but adds some amount of boilerplate code.

Simple Hierarchy, v2: Enter the CRTP

The CRTP is a C++ idiom that enables the injection of the derived class name into its templated

base. You can learn about it in the series on CRTP on Fluent C++.

We will use it to declare methods with the correct derived prototypes in the CRTP base class,

methods that will then be injected through inheritance into the derived class itself:

template <typename Derived, typename Base>

class clone_inherit<Derived, Base> : public Base

43

https://www.fluentcpp.com/2017/05/12/curiously-recurring-template-pattern/

{

public:

 std::unique_ptr<Derived> clone() const

 {

 return

std::unique_ptr<Derived>(static_cast<Derived*>(this->clone_impl()));

 }

private:

 virtual clone_inherit * clone_impl() const override

 {

 return new Derived(*this);

 }

};

clone_inherit is a CRTP that knows its derived class, but also all its direct base class. It

implements the covariant clone_impl() and hiding clone() member functions as usual, but

they use casts to move through the hierarchy of types.

This enables us to change the concrete class defined above into:

class concrete

 : public clone_inherit<concrete, cloneable>

{

};

int main()

{

 std::unique_ptr<concrete> c = std::make_unique<concrete>();

 std::unique_ptr<concrete> cc = b->clone();

 cloneable * p = c.get();

 std::unique_ptr<clonable> pp = p->clone();

}

As you can see, the concrete class is now free of clutter.

This effectively adds a polymorphic and covariant clone() to a hierarchy of class.

This CRTP is the foundation of our general solution: Every next step will build upon it.

44

Multiple Inheritance: Variadic templates to the rescue

One complication of OO hierarchies is multiple inheritance.

In our case, how can we extend our solution to support the case where the concrete class inherits

from two bases classes that both provide the same clone feature?

The solution first needs the two base classes, foo and bar , to offer the clone /clone_impl

member functions:

class foo

{

public:

 virtual ~foo() = default;

 std::unique_ptr<foo> clone() const

 {

 return std::unique_ptr<foo>(this->clone_impl());

 }

private:

 virtual foo * clone_impl() const = 0;

};

///

class bar

{

public:

 virtual ~bar() = default;

 std::unique_ptr<bar> clone() const

 {

 return std::unique_ptr<bar>(this->clone_impl());

 }

45

private:

 virtual bar * clone_impl() const = 0;

};

There’s a bit of boilerplate, here, but we’ll address it later. For now, we must solve the

inheritance issue, and C++11 provides us with an easy solution: Variadic templates.

We only need to modify the clone_inherit CRTP to support it:

template <typename Derived, typename ... Bases>

class clone_inherit : public Bases...

{

public:

 std::unique_ptr<Derived> clone() const

 {

 return

std::unique_ptr<Derived>(static_cast<Derived*>(this->clone_impl()));

 }

private:

 virtual clone_inherit * clone_impl() const override

 {

 return new Derived(static_cast<const Derived & >(*this));

 }

};

We can now write our concrete class using it:

class concrete

 : public clone_inherit<concrete, foo, bar>

{

};

Last, but not least, we can use our classes with both covariance and smart pointers:

int main()

{

 std::unique_ptr<concrete> c = std::make_unique<concrete>();

 std::unique_ptr<concrete> cc = c->clone();

 foo * f = c.get();

46

 std::unique_ptr<foo> ff = f->clone();

 bar * b = c.get();

 std::unique_ptr<bar> bb = b->clone();

}

Multiple Inheritance v2: Specialization to the rescue

Now, let’s address the clutter: Both foo and bar offer the same “cloneable” feature. And in our

case, both should be virtually destructible.

The solution is to specialize clone_inherit to handle the case when no base class is desired,

provide the virtual destructors, and have foo and bar inherit from it:

template <typename Derived, typename ... Bases>

class clone_inherit : public Bases...

{

public:

 virtual ~clone_inherit() = default;

 std::unique_ptr<Derived> clone() const

 {

 return

std::unique_ptr<Derived>(static_cast<Derived*>(this->clone_impl()));

 }

private:

 virtual clone_inherit * clone_impl() const override

 {

 return new Derived(static_cast<const Derived & >(*this));

 }

};

///

template <typename Derived>

class clone_inherit<Derived>

{

public:

 virtual ~clone_inherit() = default;

47

 std::unique_ptr<Derived> clone() const

 {

 return

std::unique_ptr<Derived>(static_cast<Derived*>(this->clone_impl()));

 }

private:

 virtual clone_inherit * clone_impl() const = 0;

};

This way, we can now write:

class foo

 : public clone_inherit<foo>

{

};

///

class bar

 : public clone_inherit<bar>

{

};

///

class concrete

 : public clone_inherit<concrete, foo, bar>

{

};

Last, but not least, we can use our classes with both covariance and smart pointers:

int main()

{

 std::unique_ptr<concrete> c = std::make_unique<concrete>();

 std::unique_ptr<concrete> cc = c->clone();

 foo * f = c.get();

 std::unique_ptr<foo> ff = f->clone();

 bar * b = c.get();

 std::unique_ptr<bar> bb = b->clone();

48

}

Deep Hierarchy: Abstracting

Another complication of OO Hierarchies is that they can go deeper than two levels:

The thing is, as Scott Meyers advised us, non-leaf classes are not supposed to be instantiable by

themselves (More Effective C++, item 33).

In our case, the clone_impl method in the non-leaf class must then be pure virtual.

Our solution must thus support the choice of declaring clone_impl pure virtual, or

implemented.

First, we add a dedicated type who will be used to “mark” a type:

template <typename T>

class abstract_method

{

};

Then, we partially specialize the clone_inherit class again to use that type, which means

(because of the previous specialization), 4 different clone_inherit implementations:

// general: inheritance + clone_impl implemented

template <typename Derived, typename ... Bases>

class clone_inherit : public Bases...

{

public:

 virtual ~clone_inherit() = default;

49

 std::unique_ptr<Derived> clone() const

 {

 return

std::unique_ptr<Derived>(static_cast<Derived*>(this->clone_impl()));

 }

private:

 virtual clone_inherit * clone_impl() const override

 {

 return new Derived(static_cast<const Derived & >(*this));

 }

};

///

// specialization: inheritance + clone_impl NOT implemented

template <typename Derived, typename ... Bases>

class clone_inherit<abstract_method<Derived>, Bases...> : public

Bases...

{

public:

 virtual ~clone_inherit() = default;

 std::unique_ptr<Derived> clone() const

 {

 return

std::unique_ptr<Derived>(static_cast<Derived*>(this->clone_impl()));

 }

private:

 virtual clone_inherit * clone_impl() const = 0;

};

///

// specialization: NO inheritance + clone_impl implemented

template <typename Derived>

class clone_inherit<Derived>

{

public:

 virtual ~clone_inherit() = default;

50

 std::unique_ptr<Derived> clone() const

 {

 return

std::unique_ptr<Derived>(static_cast<Derived*>(this->clone_impl()));

 }

private:

 virtual clone_inherit * clone_impl() const override

 {

 return new Derived(static_cast<const Derived & >(*this));

 }

};

///

// specialization: NO inheritance + clone_impl NOT implemented

template <typename Derived>

class clone_inherit<abstract_method<Derived>>

{

public:

 virtual ~clone_inherit() = default;

 std::unique_ptr<Derived> clone() const

 {

 return

std::unique_ptr<Derived>(static_cast<Derived*>(this->clone_impl()));

 }

private:

 virtual clone_inherit * clone_impl() const = 0;

};

It starts to be is a lot of code, but this will enable the user to actually use the feature with no

boilerplate at all, as demonstrated by the following code:

class cloneable

 : public clone_inherit<abstract_method<cloneable>>

{

};

///

class abstracted

51

 : public clone_inherit<abstract_method<abstracted>, cloneable>

{

};

///

class concrete

 : public clone_inherit<concrete, abstracted>

{

};

int main()

{

 std::unique_ptr<concrete> c = std::make_unique<concrete>();

 std::unique_ptr<concrete> cc = c->clone();

 abstracted * a = c.get();

 std::unique_ptr<abstracted> aa = a->clone();

 cloneable * p = c.get();

 std::unique_ptr<clonable> pp = p->clone();

}

Again, we succeeded in not cluttering too much the user code, and make this pattern scalable.

Diamond Inheritance: Virtual-ing

Yet another complication of OO Hierarchies is that we can have a diamond inheritance:

In C++, this means we have a choice to do: Is the base class inherited virtually, or not?

52

This choice must thus be provided by clone_inherit. The thing is, declaring a virtual inheritance

is much more tricky because of the template parameter pack... Or is it?

Let's write a class that will do the indirection:

template <typename T>

class virtual_inherit_from : virtual public T

{

 using T::T;

};

This class actually applies the virtual inheritance to its base class T , which is exactly what we

wanted. Now, all we need is to use this class to explicit our virtual inheritance need:

class foo

 : public clone_inherit<abstract_method<foo>,

virtual_inherit_from<cloneable>>

{

};

class bar

 : public clone_inherit<abstract_method<bar>,

virtual_inherit_from<cloneable>>

{

};

///

class concrete

 : public clone_inherit<concrete, foo, bar>

{

};

int main()

{

 std::unique_ptr<concrete> c = std::make_unique<concrete>();

 std::unique_ptr<concrete> cc = c->clone();

 foo * f = c.get();

 std::unique_ptr<foo> ff = c->clone();

 bar * b = c.get();

53

 std::unique_ptr<bar> bb = c->clone();

 cloneable * p = c.get();

 std::unique_ptr<cloneable> pp = p->clone();

}

Again, we succeeded in not cluttering too much the user code, and make this pattern scalable.

... Et voilà!

The whole package

The whole clone-ing code is:

///

template <typename T>

class abstract_method

{

};

///

template <typename T>

class virtual_inherit_from : virtual public T

{

 using T::T;

};

///

template <typename Derived, typename ... Bases>

class clone_inherit : public Bases...

{

public:

 virtual ~clone_inherit() = default;

 std::unique_ptr<Derived> clone() const

 {

 return

std::unique_ptr<Derived>(static_cast<Derived*>(this->clone_impl()));

 }

54

protected:

 // desirable, but impossible in C++17

 // see: http://cplusplus.github.io/EWG/ewg-active.html#102

 // using typename... Bases::Bases;

private:

 virtual clone_inherit * clone_impl() const override

 {

 return new Derived(static_cast<const Derived & >(*this));

 }

};

///

template <typename Derived, typename ... Bases>

class clone_inherit<abstract_method<Derived>, Bases...> : public

Bases...

{

public:

 virtual ~clone_inherit() = default;

 std::unique_ptr<Derived> clone() const

 {

 return std::unique_ptr<Derived>(static_cast<Derived

*>(this->clone_impl()));

 }

protected:

 // desirable, but impossible in C++17

 // see: http://cplusplus.github.io/EWG/ewg-active.html#102

 // using typename... Bases::Bases;

private:

 virtual clone_inherit * clone_impl() const = 0;

};

///

template <typename Derived>

class clone_inherit<Derived>

{

public:

 virtual ~clone_inherit() = default;

55

 std::unique_ptr<Derived> clone() const

 {

 return

std::unique_ptr<Derived>(static_cast<Derived*>(this->clone_impl()));

 }

private:

 virtual clone_inherit * clone_impl() const override

 {

 return new Derived(static_cast<const Derived & >(*this));

 }

};

///

template <typename Derived>

class clone_inherit<abstract_method<Derived>>

{

public:

 virtual ~clone_inherit() = default;

 std::unique_ptr<Derived> clone() const

 {

 return

std::unique_ptr<Derived>(static_cast<Derived*>(this->clone_impl()));

 }

private:

 virtual clone_inherit * clone_impl() const = 0;

};

///

... and the user code is:

///

class cloneable

 : public clone_inherit<abstract_method<cloneable>>

{

};

56

///

class foo

 : public clone_inherit<abstract_method<foo>,

virtual_inherit_from<cloneable>>

{

};

///

class bar

 : public clone_inherit<abstract_method<bar>,

virtual_inherit_from<cloneable>>

{

};

///

class concrete

 : public clone_inherit<concrete, foo, bar>

{

};

///

... which is not bad, all in all.

Would we use it in production code? While this set of techniques is interesting, it doesn't

compile on Visual Studio 2017 (virtual inheritance, diamond and covariance don’t mix well in

Visual Studio), which is in our case, a showstopper. But it compiles at least with GCC 5.4.0+, as

well as Clang 3.8.0+.

This set of techniques shows how, by using a clever but all-in-all simple combo of two

orthogonal C++ paradigms, object oriented and generic (templates), we can factor out code to

produce results with a concision that would have been difficult or impossible to get in other

C-like languages.

It also shows a list of techniques (simulated covariance, inheritance indirection providing

features) that can be applied elsewhere, each relying on C++ features assembled like lego pieces

to produce the desired result.

Which is pretty cool IMHO.

:-)

57

https://godbolt.org/g/EfR6Jj
https://godbolt.org/g/y47keb

